Connect with us

AI

6 Technology Operations Your Business Should Update Now

You can think of technology operations as a broad category of processes or requirements that keep a business running. Members of your company’s IT team are almost always involved in these aspects, although other departments often play crucial roles, too. “If it’s been a while since you’ve updated your technology operations, now is a great […]

The post 6 Technology Operations Your Business Should Update Now appeared first on Aiiot Talk – Artificial Intelligence | Internet of Things | Technology.

Published

on

You can think of technology operations as a broad category of processes or requirements that keep a business running. Members of your company’s IT team are almost always involved in these aspects, although other departments often play crucial roles, too.

“If it’s been a while since you’ve updated your technology operations, now is a great time to strongly consider doing that.” 

Enhancing them for your current needs helps technology better support your business. You can also measure the return on investment (ROI) of these updates, letting you see if they pay off. 

1. Cyberthreat Detection

If IT team members mention that their methods of conquering cyberthreats are too reactive, that’s a sign it’s time to improve how your company spots issues that could threaten its network. Even the hardest-working cybersecurity professionals often need support to screen for network threats. For example, some are undoubtedly false alarms. But what if workers spend too much time assessing those and miss the real dangers?

Many of today’s cybersecurity tools for threat identification feature intelligent capabilities that learn what constitutes “normal” network traffic. They then alert IT professionals about anything that strays from what’s usual or expected. You can also find tools that automatically categorize potential incoming threats according to severity. That way, IT teams know how to prioritize their efforts and prevent catastrophes.

Improving cyberthreat detection with more advanced technologies can strengthen your business by making it more resilient against malicious intruders. The best way to calculate the associated ROI is to measure how many more genuine threats your cybersecurity team can notice and tackle with help from technology. Another option is to measure the average time spent on finding new vulnerabilities versus managing the known ones.

2. Customer Service and Help Desk Requests

Improving what happens once people reach out for help could be another crucial aim as your company updates its technology operations. For example, maybe you already have a trouble ticket system that employees use when encountering error messages or other tech-related woes. One possibility for updating those associated operations would be to have the tickets automatically go into different inboxes based on subject or severity.

Technology can also help companies achieve better customer loyalty through aspects like website information. For example, if a company has an excellent support section on its site, customers may discover they can find the answers they seek there rather than waiting to talk to a representative on the phone.

“Similarly, introducing a live chat or chatbot feature could cater to people who dislike making phone calls or can’t do it when they need assistance.” 

Making progress with customer service and help desk communications could make issue resolution happen faster. It could also help companies collect and analyze more data about the most common problems or the most effective ways to solve them.

Having such information could help a business grow by raising satisfaction levels. Measuring ROI could happen if enterprises track resolution times or quality ratings are given for assistance received.

3. Emergency Power Resources

A sizeable part of running a successful business requires planning what to do if the worst happens. Generators and uninterruptable power sources can keep essential aspects of your company — such as a data centre’s servers — operating during power outages. However, if you do not regularly test how those resources would function during real-world requirements, or have not ever done so, update your practices with load bank testing.

A load bank verifies the power source’s rated output capabilities before real-world use. The National Fire Prevention Association — which has a standard for emergency and standby power equipment — requires monthly testing for these systems.

Become familiar with the possible load bank configurations to learn which one is most appropriate for your business. If you have the space available, a stationary model may be the most convenient solution. However, some portable models weigh less than 100 pounds. You can feel confident in the ROI of updating your operations like this because these tests ensure your emergency power sources will function correctly when you need them most.

4. Report Generation

Regardless of the kind of business you run, the ongoing operations likely require reporting. Maybe your human resources leader wants a breakdown of the company’s most productive teams over the last 60 days. Perhaps someone else needs specifics on a department’s expenditures and how they changed since the start of the year.

Various solutions on the market can help people save time, increase accuracy and make information easier to digest. Addressing the weaknesses associated with report creation starts with knowing what they are. Do many team members complain about how it’s difficult to source the content they need? Perhaps executives mention that they’d love if it were easier to grasp the key takeaways at a glance.

After learning about the main struggles, you’re in a good position to explore how technology could help. Give people plenty of time to get used to any new tools. Once they adjust, measure ROI by tracking things like how long it takes to create a report or whether the number of mistakes in the documents drops.

5. Automation-Ready Manual Processes

It’s also wise to look at any technology operations your team members perform manually. Computers can do some tasks quicker or better than humans. Thanks to technological advancements such as artificial intelligence (AI), companies can enhance many processes. Not all responsibilities are automation-ready. That means company representatives must devote ample time to exploring which ones are best suited to it.

Computers typically excel at mathematical calculations, so you might investigate using them for invoicing or budgeting tasks. Pay close attention to parts of processes that limit employees’ available time to do other things, too. For example, maybe technology could cut down on the amount of data entry humans do by automatically recognizing the details on an electronic document and importing them into a complementing tool.

You can measure ROI in various ways. Are employees more productive? Maybe clients mention that they appreciate how your company sends them documents faster than before. The number of manual processes you can automate is growing rapidly. Even if you’re not sure how to implement automation or don’t think your company needs it yet, it’s worthwhile to stay aware of the technological solutions that emerge.

6. Remote and Constant Monitoring

The Internet of Things (IoT) involves connected devices that serve a variety of purposes, ranging from entertainment to workplace productivity. Certain industries have especially embraced the IoT and used the technology to drastically change and enhance their operations.

For example, health care workers can put patients under constant monitoring, which allows them to spot issues proactively. If a person mentions that they often get heart palpitations while lying in bed at night, a physician may struggle to confirm the abnormality during an office visit. There’s a limited window for the symptom to occur. However, a doctor could send the patient home with a wearable that tracks heart activity from home.

Businesses can benefit from improving their operations with remote and continual monitoring, too. For example, an IT professional could see precisely when an employee logs into a network, and from what device. They could also verify when a person attempted to enter a door code to access a server room, even if the person overseeing things is not onsite. Businesses can measure ROI in saved time and increased visibility for a start.

Modernizing Your Technology Operations Increases Competitiveness

These six areas give a useful overview of how your company could take its technology operations to the next level. Although you’ll see many benefits from doing so, better competitiveness is one of the most likely outcomes.

After all, many of these solutions aim to reduce undesirable events and make people more efficient. When workers waste less time or deal with fewer obstacles, they’ll be well-equipped to make meaningful contributions to your business.

                                                             —- Lexie is a web designer and IoT enthusiast. She enjoys hiking with her golden doodle and checking out local flea markets. Connect with her on Twitter @lexieludesigner.

Source: https://www.aiiottalk.com/business/technology-operations-for-your-business/

AI

Graph Convolutional Networks (GCN)

In this post, we’re gonna take a close look at one of the well-known graph neural networks named Graph Convolutional Network (GCN). First, we’ll get the intuition to see how it works, then we’ll go deeper into the maths behind it. Why Graphs? Many problems are graphs in true nature. In our world, we see many data are graphs, […]

The post Graph Convolutional Networks (GCN) appeared first on TOPBOTS.

Published

on

graph convolutional networks

In this post, we’re gonna take a close look at one of the well-known graph neural networks named Graph Convolutional Network (GCN). First, we’ll get the intuition to see how it works, then we’ll go deeper into the maths behind it.

Why Graphs?

Many problems are graphs in true nature. In our world, we see many data are graphs, such as molecules, social networks, and paper citations networks.

Tasks on Graphs

  • Node classification: Predict a type of a given node
  • Link prediction: Predict whether two nodes are linked
  • Community detection: Identify densely linked clusters of nodes
  • Network similarity: How similar are two (sub)networks

Machine Learning Lifecycle

In the graph, we have node features (the data of nodes) and the structure of the graph (how nodes are connected).

For the former, we can easily get the data from each node. But when it comes to the structure, it is not trivial to extract useful information from it. For example, if 2 nodes are close to one another, should we treat them differently to other pairs? How about high and low degree nodes? In fact, each specific task can consume a lot of time and effort just for Feature Engineering, i.e., to distill the structure into our features.

graph convolutional network
Feature engineering on graphs. (Picture from [1])

It would be much better to somehow get both the node features and the structure as the input, and let the machine to figure out what information is useful by itself.

That’s why we need Graph Representation Learning.

graph convolutional network
We want the graph can learn the “feature engineering” by itself. (Picture from [1])

If this in-depth educational content on convolutional neural networks is useful for you, you can subscribe to our AI research mailing list to be alerted when we release new material. 

Graph Convolutional Networks (GCNs)

Paper: Semi-supervised Classification with Graph Convolutional Networks (2017) [3]

GCN is a type of convolutional neural network that can work directly on graphs and take advantage of their structural information.

it solves the problem of classifying nodes (such as documents) in a graph (such as a citation network), where labels are only available for a small subset of nodes (semi-supervised learning).

graph convolutional network
Example of Semi-supervised learning on Graphs. Some nodes dont have labels (unknown nodes).

Main Ideas

As the name “Convolutional” suggests, the idea was from Images and then brought to Graphs. However, when Images have a fixed structure, Graphs are much more complex.

graph convolutional network
Convolution idea from images to graphs. (Picture from [1])

The general idea of GCN: For each node, we get the feature information from all its neighbors and of course, the feature of itself. Assume we use the average() function. We will do the same for all the nodes. Finally, we feed these average values into a neural network.

In the following figure, we have a simple example with a citation network. Each node represents a research paper, while edges are the citations. We have a pre-process step here. Instead of using the raw papers as features, we convert the papers into vectors (by using NLP embedding, e.g., tf–idf).

Let’s consider the green node. First off, we get all the feature values of its neighbors, including itself, then take the average. The result will be passed through a neural network to return a resulting vector.

graph convolutional network
The main idea of GCN. Consider the green node. First, we take the average of all its neighbors, including itself. After that, the average value is passed through a neural network. Note that, in GCN, we simply use a fully connected layer. In this example, we get 2-dimension vectors as the output (2 nodes at the fully connected layer).

In practice, we can use more sophisticated aggregate functions rather than the average function. We can also stack more layers on top of each other to get a deeper GCN. The output of a layer will be treated as the input for the next layer.

graph convolutional network
Example of 2-layer GCN: The output of the first layer is the input of the second layer. Again, note that the neural network in GCN is simply a fully connected layer (Picture from [2])

Let’s take a closer look at the maths to see how it really works.

Intuition and the Maths behind

First, we need some notations

Let’s consider a graph G as below.

graph convolutional network
From the graph G, we have an adjacency matrix A and a Degree matrix D. We also have feature matrix X.

How can we get all the feature values from neighbors for each node? The solution lies in the multiplication of A and X.

Take a look at the first row of the adjacency matrix, we see that node A has a connection to E. The first row of the resulting matrix is the feature vector of E, which A connects to (Figure below). Similarly, the second row of the resulting matrix is the sum of feature vectors of D and E. By doing this, we can get the sum of all neighbors’ vectors.

graph convolutional network
Calculate the first row of the “sum vector matrix” AX
  • There are still some things that need to improve here.
  1. We miss the feature of the node itself. For example, the first row of the result matrix should contain features of node A too.
  2. Instead of sum() function, we need to take the average, or even better, the weighted average of neighbors’ feature vectors. Why don’t we use the sum() function? The reason is that when using the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes tend to get small aggregate vectors, which may later cause exploding or vanishing gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale of input data. Thus, we need to normalize these vectors to get rid of the potential issues.

In Problem (1), we can fix by adding an Identity matrix I to A to get a new adjacency matrix Ã.

Pick lambda = 1 (the feature of the node itself is just important as its neighbors), we have Ã = A + I. Note that we can treat lambda as a trainable parameter, but for now, just assign the lambda to 1, and even in the paper, lambda is just simply assigned to 1.

By adding a self-loop to each node, we have the new adjacency matrix

Problem (2)For matrix scaling, we usually multiply the matrix by a diagonal matrix. In this case, we want to take the average of the sum feature, or mathematically, to scale the sum vector matrix ÃX according to the node degrees. The gut feeling tells us that our diagonal matrix used to scale here is something related to the Degree matrix D̃ (Why , not D? Because we’re considering Degree matrix  of new adjacency matrix Ã, not A anymore).

The problem now becomes how we want to scale/normalize the sum vectors? In other words:

How we pass the information from neighbors to a specific node?

We would start with our old friend average. In this case, D̃ inverse (i.e., D̃^{-1}) comes into play. Basically, each element in D̃ inverse is the reciprocal of its corresponding term of the diagonal matrix D.

For example, node A has a degree of 2, so we multiple the sum vectors of node A by 1/2, while node E has a degree of 5, we should multiple the sum vector of E by 1/5, and so on.

Thus, by taking the multiplication of D̃ inverse and X, we can take the average of all neighbors’ feature vectors (including itself).

So far so good. But you may ask How about the weighted average()?. Intuitively, it should be better if we treat high and low degree nodes differently.

We’re just scaling by rows, but ignoring their corresponding columns (dash boxes)
Add a new scaler for columns.

The new scaler gives us the “weighted” average. What are we doing here is to put more weights on the nodes that have low-degree and reduce the impact of high-degree nodes. The idea of this weighted average is that we assume low-degree nodes would have bigger impacts on their neighbors, whereas high-degree nodes generate lower impacts as they scatter their influence at too many neighbors.

graph convolutional network
When aggregating feature at node B, we assign the biggest weight for node B itself (degree of 3), and the lowest weight for node E (degree of 5)
Because we normalize twice, we change “-1” to “-1/2”

For example, we have a multi-classification problem with 10 classes, F will be set to 10. After having the 10-dimension vectors at layer 2, we pass these vectors through a softmax function for the prediction.

The Loss function is simply calculated by the cross-entropy error over all labeled examples, where Y_{l} is the set of node indices that have labels.

The number of layers

The meaning of #layers

The number of layers is the farthest distance that node features can travel. For example, with 1 layer GCN, each node can only get the information from its neighbors. The gathering information process takes place independentlyat the same time for all the nodes.

When stacking another layer on top of the first one, we repeat the gathering info process, but this time, the neighbors already have information about their own neighbors (from the previous step). It makes the number of layers as the maximum number of hops that each node can travel. So, depends on how far we think a node should get information from the networks, we can config a proper number for #layers. But again, in the graph, normally we don’t want to go too far. With 6–7 hops, we almost get the entire graph which makes the aggregation less meaningful.

graph convolutional network
Example: Gathering info process with 2 layers of target node i

How many layers should we stack the GCN?

In the paper, the authors also conducted some experiments with shallow and deep GCNs. From the figure below, we see that the best results are obtained with a 2- or 3-layer model. Besides, with a deep GCN (more than 7 layers), it tends to get bad performances (dashed blue line). One solution is to use the residual connections between hidden layers (purple line).

graph convolutional network
Performance over #layers. Picture from the paper [3]

Take home notes

  • GCNs are used for semi-supervised learning on the graph.
  • GCNs use both node features and the structure for the training
  • The main idea of the GCN is to take the weighted average of all neighbors’ node features (including itself): Lower-degree nodes get larger weights. Then, we pass the resulting feature vectors through a neural network for training.
  • We can stack more layers to make GCNs deeper. Consider residual connections for deep GCNs. Normally, we go for 2 or 3-layer GCN.
  • Maths Note: When seeing a diagonal matrix, think of matrix scaling.
  • A demo for GCN with StellarGraph library here [5]. The library also provides many other algorithms for GNNs.

Note from the authors of the paper: The framework is currently limited to undirected graphs (weighted or unweighted). However, it is possible to handle both directed edges and edge features by representing the original directed graph as an undirected bipartite graph with additional nodes that represent edges in the original graph.

What’s next?

With GCNs, it seems we can make use of both the node features and the structure of the graph. However, what if the edges have different types? Should we treat each relationship differently? How to aggregate neighbors in this case? What are the advanced approaches recently?

In the next post of the graph topic, we will look into some more sophisticated methods.

graph convolutional network
How to deal with different relationships on the edges (brother, friend,….)?

REFERENCES

[1] Excellent slides on Graph Representation Learning by Jure Leskovec (Stanford):  https://drive.google.com/file/d/1By3udbOt10moIcSEgUQ0TR9twQX9Aq0G/view?usp=sharing

[2] Video Graph Convolutional Networks (GCNs) made simple: https://www.youtube.com/watch?v=2KRAOZIULzw

[3] Paper Semi-supervised Classification with Graph Convolutional Networks (2017): https://arxiv.org/pdf/1609.02907.pdf

[4] GCN source code: https://github.com/tkipf/gcn

[5] Demo with StellarGraph library: https://stellargraph.readthedocs.io/en/stable/demos/node-classification/gcn-node-classification.html

This article was originally published on Medium and re-published to TOPBOTS with permission from the author.

Enjoy this article? Sign up for more computer vision updates.

We’ll let you know when we release more technical education.

Continue Reading

AI

Microsoft BOT Framework — Loops

Published

on

Loops is one of the basic programming structure in any programming language. In this article, I would demonstrate Loops within Microsoft BOT framework.

To follow this article clearly, please have a quick read on the basics of the Microsoft BOT framework. I wrote a couple of articles sometime back and the links are below:

Let’s Get Started.

I would be using the example of a TaxiBot described in one of my previous article. The BOT asks some general questions and books a Taxi for the user. In this article, I would be providing an option to the user to choose there preferred cars for the ride. The flow will look like below:

Create a new Dialog Class for Loops

We would need 2 Dialog classes to be able to achieve this task:

  1. SuperTaxiBotDialog.cs: This would be the main dialog class. The waterfall will contains all the steps as defined in the previous article.
  2. ChooseCarDialog.cs: A new dialog class will be created which would allow the user to pick preferred cars. The loop will be defined in this class.

The water fall steps for both the classes could be visualized as:

The complete code base is present on the Github page.

Important Technical Aspects

  • Link between the Dialogs: In the constructor initialization of SuperTaxiBotDialog, add a dialog for ChooseCarDialog by adding the line:
AddDialog(new ChooseCarDialog());

1. 8 Proven Ways to Use Chatbots for Marketing (with Real Examples)

2. How to Use Texthero to Prepare a Text-based Dataset for Your NLP Project

3. 5 Top Tips For Human-Centred Chatbot Design

4. Chatbot Conference Online

  • Call ChooseCarDialog from SuperTaxiBotDialog: SuperTaxiBotDialog calls ChooseCarDialog from the step SetPreferredCars, hence the return statement of the step should be like:
await stepContext.BeginDialogAsync(nameof(ChooseCarDialog), null, cancellationToken);
  • Return the flow back from ChooseCarDialog to SuperTaxiBotDialog: Once the user has selected 2 cars, the flow has to be sent back to SuperTaxiBotDialog from the step LoopCarAsync. This should be achieved by ending the ChooseCarDialog in the step LoopCarAsync.
return await stepContext.EndDialogAsync(carsSelected, cancellationToken);

The complete code base is present on the Github page.

Once the project is executed using BOT Framework Emulator, the output would look like:

Hopefully, this article will help the readers in implementing a loop with Microsoft BOT framework. For questions: Hit me.

Regards

Tarun

Source: https://chatbotslife.com/microsoft-bot-framework-loops-fe415f0e7ca1?source=rss—-a49517e4c30b—4

Continue Reading

AI

The Bleeding Edge of Voice

This fall, a little known event is starting to make waves. As COVID dominates the headlines, an event called “Voice Launch” is pulling…

Published

on

Tapaan Chauhan

This fall, a little known event is starting to make waves. As COVID dominates the headlines, an event called “Voice Launch” is pulling together an impressive roster of start-ups and voice tech companies intending to uncover the next big ideas and start-ups in voice.

While voice tech has been around for a while, as the accuracy of speech recognition improves, it moves into its prime. “As speech recognition moves from 85% to 95% accuracy, who will use a keyboard anymore?” says Voice Launch organizer Eric Sauve. “And that new, more natural way to interact with our devices will usher in a series of technological advances,” he added.

Voice technology is something that has been dreamt of and worked on for decades all over the world. Why? Well, the answer is very straightforward. Voice recognition allows consumers to multitask by merely speaking to their Google Home, Amazon Alexa, Siri, etc. Digital voice recording works by recording a voice sample of a person’s speech and quickly converting it into written texts using machine language and sophisticated algorithms. Voice input is just the more efficient form of computing, says Mary Meeker in her ‘Annual Internet Trends Report.’ As a matter of fact, according to ComScore, 50% of all searches will be done by voice by 2020, and 30% of searches will be done without even a screen, according to Gartner. As voice becomes a part of things we use every day like our cars, phones, etc. it will become the new “norm.”

The event includes a number of inspiration sessions meant to help start-ups and founders pick the best strategies. Companies presenting here include industry leaders like Google and Amazon and less known hyper-growth voice tech companies like Deepgram and Balto and VCs like OMERS Ventures and Techstars.

But the focus of the event is the voice tech start-ups themselves, and this year’s event has some interesting participants. Start-ups will pitch their ideas, and the audience will vote to select the winners. The event is a cross between a standard pitchfest and Britain’s Got Talent.

Source: https://chatbotslife.com/the-bleeding-edge-of-voice-67538bd859a9?source=rss—-a49517e4c30b—4

Continue Reading
AI2 hours ago

Graph Convolutional Networks (GCN)

AI4 hours ago

Microsoft BOT Framework — Loops

AI4 hours ago

The Bleeding Edge of Voice

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

AI19 hours ago

Using Amazon SageMaker inference pipelines with multi-model endpoints

Trending