Connect with us

AI

This month in AWS Machine Learning: July 2020 edition

Every day there is something new going on in the world of AWS Machine Learning—from launches to new use cases like posture detection to interactive trainings like the AWS Power Hour: Machine Learning on Twitch. We’re packaging some of the not-to-miss information from the ML Blog and beyond for easy perusing each month. Check back […]

Published

on

Every day there is something new going on in the world of AWS Machine Learning—from launches to new use cases like posture detection to interactive trainings like the AWS Power Hour: Machine Learning on Twitch. We’re packaging some of the not-to-miss information from the ML Blog and beyond for easy perusing each month. Check back at the end of each month for the latest roundup.

Launches

As models become more sophisticated, AWS customers are increasingly applying machine learning (ML) prediction to video content, whether that’s in media and entertainment, autonomous driving, or more. At AWS, we had the following exciting July launches:

  • On July 9, we announced that SageMaker Ground Truth now supports video labeling. The National Football League (NFL) has already put this new feature to work to develop labels for training a computer vision system that tracks all 22 players as they move on the field during plays. Amazon SageMaker Ground Truth reduced the timeline for developing a high-quality labeling dataset by more than 80%.
  • On July 13, we launched the availability of AWS DeepRacer Evo and Sensor Kit for purchase. AWS DeepRacer Evo is available for a limited-time, discounted price of $399, a savings of $199 off the regular bundle price of $598, and the AWS DeepRacer Sensor Kit is available for $149, a savings of $100 off the regular price of $249. AWS DeepRacer is a fully autonomous 1/18th scale race car powered by reinforcement learning (RL) that gives ML developers of all skill levels the opportunity to learn and build their ML skills in a fun and competitive way. AWS DeepRacer Evo includes new features and capabilities to help you learn more about ML through the addition of sensors that enable object avoidance and head-to-head racing. Both items are available on com for shipping in the US only.
  • On July 23, we announced that Contact Lens for Amazon Connect is now generally available. Contact Lens is a set of capabilities for Amazon Connect enabled by ML that gives contact centers the ability to understand the sentiment, trends, and compliance of customer conversations to improve their experience and identify crucial feedback.
  • As of July 28, Amazon Fraud Detector is now generally available. Amazon Fraud Detector is a fully managed service that makes it easy to identify potentially fraudulent online activities such as online payment fraud and the creation of fake accounts. It uses your data, ML, and more than 20 years of fraud detection expertise from Amazon to automatically identify potentially fraudulent online activity so you can catch more fraud faster.
  • Develop your own custom genre model to create AI-generated tunes in our latest AWS DeepComposer Chartbusters Challenge, Spin the Model. Submit your entries by 8/23 & see if you can top the #AI charts on SoundCloud for a chance to win some great prizes.

Use cases

Get ideas and architectures from AWS customers, partners, ML Heroes, and AWS experts on how to apply ML to your use case:

Explore more ML stories

Want more news about developments in ML? Check out the following stories:

  • Formula 1 Pit Strategy Battle – Take a deep dive into how the Amazon ML Solutions Lab and Professional Services Teams worked with Formula 1 to build a real-time race strategy prediction application using AWS technology that brings pit wall decisions to the viewer, and resulted in the Pit Strategy Battle graphic. You can also learn how a serverless architecture can provide ML predictions with minimal latency across the globe, and how to get started on your own ML journey.
  • Fairness in AI – At the seventh Workshop on Automated Machine Learning (AutoML) at the International Conference on Machine Learning, Amazon researchers won a best paper award for the paper “Fair Bayesian Optimization.” The paper addresses the problem of ensuring the fairness of AI systems, a topic that has drawn increasing attention in recent years. Learn more about the research findings at Amazon.Science.

Mark your calendars

Join us for the following exciting ML events:

  • Have fun while learning how to build, train, and deploy ML models with Amazon SageMaker Fridays. Join our expert ML Specialists Emily Webber and Alex McClure for a live session on Twitch. Register now!
  • AWS Power Hour: Machine Learning is a weekly, live-streamed program that premiered Thursday, July 23, at 7:00 p.m. EST and will air at that time every Thursday for 7 weeks.

Also, if you missed it, see the Amazon Augmented AI (Amazon A2I) Tech Talk to learn how you can implement human reviews to review your ML predictions from Amazon Textract, Amazon Rekognition, Amazon Comprehend, Amazon SageMaker, and other AWS AI/ ML services.

See you next month for more on AWS ML!


About the author

Laura Jones is a product marketing lead for AWS AI/ML where she focuses on sharing the stories of AWS’s customers and educating organizations on the impact of machine learning. As a Florida native living and surviving in rainy Seattle, she enjoys coffee, attempting to ski and enjoying the great outdoors.

Source: https://aws.amazon.com/blogs/machine-learning/this-month-in-aws-machine-learning-july-2020-edition/

AI

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage. Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, […]

Published

on

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage.

Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, which enables you to search and explore Hungarian cultural heritage, including 600,000 faces over 500,000 images. For example, you can find historical works by author Mór Jókai or photos on topics like weddings. The Arcanum team chose Amazon Rekognition to free valuable staff from time and cost-intensive manual labeling, and improved label accuracy to make 200,000 previously unsearchable images (approximately 40% of image inventory), available to users.

Amazon Rekognition makes it easy to add image and video analysis to your applications using highly scalable machine learning (ML) technology that requires no previous ML expertise to use. Amazon Rekognition also provides highly accurate facial recognition and facial search capabilities to detect, analyze, and compare faces.

Arcanum uses this facial recognition feature in their image database services to help you find particular people in Arcanum’s articles. This post discusses their challenges and why they chose Amazon Rekognition as their solution.

Automated image labeling challenges

Arcanum dedicated a team of three people to start tagging and labeling content for Hungaricana. The team quickly learned that they would need to invest more than 3 months of time-consuming and repetitive human labor to provide accurate search capabilities to their customers. Considering the size of the team and scope of the existing project, Arcanum needed a better solution that would automate image and object labelling at scale.

Automated image labeling solutions

To speed up and automate image labeling, Arcanum turned to Amazon Rekognition to enable users to search photos by keywords (for example, type of historic event, place name, or a person relevant to Hungarian history).

For the Hungaricana project, preprocessing all the images was challenging. Arcanum ran a TensorFlow face search across all 28 million pages on a machine with 8 GPUs in their own offices to extract only faces from images.

The following screenshot shows what an extract looks like (image provided by Arcanum Database Ltd).

The images containing only faces are sent to Amazon Rekognition, invoking the IndexFaces operation to add a face to the collection. For each face that is detected in the specified face collection, Amazon Rekognition extracts facial features into a feature vector and stores it in an Amazon Aurora database. Amazon Rekognition uses feature vectors when it performs face match and search operations using the SearchFaces and SearchFacesByImage operations.

The image preprocessing helped create a very efficient and cost-effective way to index faces. The following diagram summarizes the preprocessing workflow.

As for the web application, the workflow starts with a Hungaricana user making a face search request. The following diagram illustrates the application workflow.

The workflow includes the following steps:

  1. The user requests a facial match by uploading the image. The web request is automatically distributed by the Elastic Load Balancer to the webserver fleet.
  2. Amazon Elastic Compute Cloud (Amazon EC2) powers application servers that handle the user request.
  3. The uploaded image is stored in Amazon Simple Storage Service (Amazon S3).
  4. Amazon Rekognition indexes the face and runs SearchFaces to look for a face similar to the new face ID.
  5. The output of the search face by image operation is stored in Amazon ElastiCache, a fully managed in-memory data store.
  6. The metadata of the indexed faces are stored in an Aurora relational database built for the cloud.
  7. The resulting face thumbnails are served to the customer via the fast content-delivery network (CDN) service Amazon CloudFront.

Experimenting and live testing Hungaricana

During our test of Hungaricana, the application performed extremely well. The searches not only correctly identified people, but also provided links to all publications and sources in Arcanum’s privately owned database where found faces are present. For example, the following screenshot shows the result of the famous composer and pianist Franz Liszt.

The application provided 42 pages of 6×4 results. The results are capped to 1,000. The 100% scores are the confidence scores returned by Amazon Rekognition and are rounded up to whole numbers.

The application of Hungaricana has always promptly, and with a high degree of certainty, presented results and links to all corresponding publications.

Business results

By introducing Amazon Rekognition into their workflow, Arcanum enabled a better customer experience, including building family trees, searching for historical figures, and researching historical places and events.

The concept of face searching using artificial intelligence certainly isn’t new. But Hungaricana uses it in a very creative, unique way.

Amazon Rekognition allowed Arcanum to realize three distinct advantages:

  • Time savings – The time to market speed increased dramatically. Now, instead of spending several months of intense manual labor to label all the images, the company can do this job in a few days. Before, basic labeling on 150,000 images took months for three people to complete.
  • Cost savings – Arcanum saved around $15,000 on the Hungaricana project. Before using Amazon Rekognition, there was no automation, so a human workforce had to scan all the images. Now, employees can shift their focus to other high-value tasks.
  • Improved accuracy – Users now have a much better experience regarding hit rates. Since Arcanum started using Amazon Rekognition, the number of hits has doubled. Before, out of 500,000 images, about 200,000 weren’t searchable. But with Amazon Rekognition, search is now possible for all 500,000 images.

 “Amazon Rekognition made Hungarian culture, history, and heritage more accessible to the world,” says Előd Biszak, Arcanum CEO. “It has made research a lot easier for customers building family trees, searching for historical figures, and researching historical places and events. We cannot wait to see what the future of artificial intelligence has to offer to enrich our content further.”

Conclusion

In this post, you learned how to add highly scalable face and image analysis to an enterprise-level image gallery to improve label accuracy, reduce costs, and save time.

You can test Amazon Rekognition features such as facial analysis, face comparison, or celebrity recognition on images specific to your use case on the Amazon Rekognition console.

For video presentations and tutorials, see Getting Started with Amazon Rekognition. For more information about Amazon Rekognition, see Amazon Rekognition Documentation.


About the Authors

Siniša Mikašinović is a Senior Solutions Architect at AWS Luxembourg, covering Central and Eastern Europe—a region full of opportunities, talented and innovative developers, ISVs, and startups. He helps customers adopt AWS services as well as acquire new skills, learn best practices, and succeed globally with the power of AWS. His areas of expertise are Game Tech and Microsoft on AWS. Siniša is a PowerShell enthusiast, a gamer, and a father of a small and very loud boy. He flies under the flags of Croatia and Serbia.

Cameron Peron is Senior Marketing Manager for AWS Amazon Rekognition and the AWS AI/ML community. He evangelizes how AI/ML innovation solves complex challenges facing community, enterprise, and startups alike. Out of the office, he enjoys staying active with kettlebell-sport, spending time with his family and friends, and is an avid fan of Euro-league basketball.

Source: https://aws.amazon.com/blogs/machine-learning/arcanum-makes-hungarian-heritage-accessible-with-amazon-rekognition/

Continue Reading

AI

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage. Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, […]

Published

on

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage.

Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, which enables you to search and explore Hungarian cultural heritage, including 600,000 faces over 500,000 images. For example, you can find historical works by author Mór Jókai or photos on topics like weddings. The Arcanum team chose Amazon Rekognition to free valuable staff from time and cost-intensive manual labeling, and improved label accuracy to make 200,000 previously unsearchable images (approximately 40% of image inventory), available to users.

Amazon Rekognition makes it easy to add image and video analysis to your applications using highly scalable machine learning (ML) technology that requires no previous ML expertise to use. Amazon Rekognition also provides highly accurate facial recognition and facial search capabilities to detect, analyze, and compare faces.

Arcanum uses this facial recognition feature in their image database services to help you find particular people in Arcanum’s articles. This post discusses their challenges and why they chose Amazon Rekognition as their solution.

Automated image labeling challenges

Arcanum dedicated a team of three people to start tagging and labeling content for Hungaricana. The team quickly learned that they would need to invest more than 3 months of time-consuming and repetitive human labor to provide accurate search capabilities to their customers. Considering the size of the team and scope of the existing project, Arcanum needed a better solution that would automate image and object labelling at scale.

Automated image labeling solutions

To speed up and automate image labeling, Arcanum turned to Amazon Rekognition to enable users to search photos by keywords (for example, type of historic event, place name, or a person relevant to Hungarian history).

For the Hungaricana project, preprocessing all the images was challenging. Arcanum ran a TensorFlow face search across all 28 million pages on a machine with 8 GPUs in their own offices to extract only faces from images.

The following screenshot shows what an extract looks like (image provided by Arcanum Database Ltd).

The images containing only faces are sent to Amazon Rekognition, invoking the IndexFaces operation to add a face to the collection. For each face that is detected in the specified face collection, Amazon Rekognition extracts facial features into a feature vector and stores it in an Amazon Aurora database. Amazon Rekognition uses feature vectors when it performs face match and search operations using the SearchFaces and SearchFacesByImage operations.

The image preprocessing helped create a very efficient and cost-effective way to index faces. The following diagram summarizes the preprocessing workflow.

As for the web application, the workflow starts with a Hungaricana user making a face search request. The following diagram illustrates the application workflow.

The workflow includes the following steps:

  1. The user requests a facial match by uploading the image. The web request is automatically distributed by the Elastic Load Balancer to the webserver fleet.
  2. Amazon Elastic Compute Cloud (Amazon EC2) powers application servers that handle the user request.
  3. The uploaded image is stored in Amazon Simple Storage Service (Amazon S3).
  4. Amazon Rekognition indexes the face and runs SearchFaces to look for a face similar to the new face ID.
  5. The output of the search face by image operation is stored in Amazon ElastiCache, a fully managed in-memory data store.
  6. The metadata of the indexed faces are stored in an Aurora relational database built for the cloud.
  7. The resulting face thumbnails are served to the customer via the fast content-delivery network (CDN) service Amazon CloudFront.

Experimenting and live testing Hungaricana

During our test of Hungaricana, the application performed extremely well. The searches not only correctly identified people, but also provided links to all publications and sources in Arcanum’s privately owned database where found faces are present. For example, the following screenshot shows the result of the famous composer and pianist Franz Liszt.

The application provided 42 pages of 6×4 results. The results are capped to 1,000. The 100% scores are the confidence scores returned by Amazon Rekognition and are rounded up to whole numbers.

The application of Hungaricana has always promptly, and with a high degree of certainty, presented results and links to all corresponding publications.

Business results

By introducing Amazon Rekognition into their workflow, Arcanum enabled a better customer experience, including building family trees, searching for historical figures, and researching historical places and events.

The concept of face searching using artificial intelligence certainly isn’t new. But Hungaricana uses it in a very creative, unique way.

Amazon Rekognition allowed Arcanum to realize three distinct advantages:

  • Time savings – The time to market speed increased dramatically. Now, instead of spending several months of intense manual labor to label all the images, the company can do this job in a few days. Before, basic labeling on 150,000 images took months for three people to complete.
  • Cost savings – Arcanum saved around $15,000 on the Hungaricana project. Before using Amazon Rekognition, there was no automation, so a human workforce had to scan all the images. Now, employees can shift their focus to other high-value tasks.
  • Improved accuracy – Users now have a much better experience regarding hit rates. Since Arcanum started using Amazon Rekognition, the number of hits has doubled. Before, out of 500,000 images, about 200,000 weren’t searchable. But with Amazon Rekognition, search is now possible for all 500,000 images.

 “Amazon Rekognition made Hungarian culture, history, and heritage more accessible to the world,” says Előd Biszak, Arcanum CEO. “It has made research a lot easier for customers building family trees, searching for historical figures, and researching historical places and events. We cannot wait to see what the future of artificial intelligence has to offer to enrich our content further.”

Conclusion

In this post, you learned how to add highly scalable face and image analysis to an enterprise-level image gallery to improve label accuracy, reduce costs, and save time.

You can test Amazon Rekognition features such as facial analysis, face comparison, or celebrity recognition on images specific to your use case on the Amazon Rekognition console.

For video presentations and tutorials, see Getting Started with Amazon Rekognition. For more information about Amazon Rekognition, see Amazon Rekognition Documentation.


About the Authors

Siniša Mikašinović is a Senior Solutions Architect at AWS Luxembourg, covering Central and Eastern Europe—a region full of opportunities, talented and innovative developers, ISVs, and startups. He helps customers adopt AWS services as well as acquire new skills, learn best practices, and succeed globally with the power of AWS. His areas of expertise are Game Tech and Microsoft on AWS. Siniša is a PowerShell enthusiast, a gamer, and a father of a small and very loud boy. He flies under the flags of Croatia and Serbia.

Cameron Peron is Senior Marketing Manager for AWS Amazon Rekognition and the AWS AI/ML community. He evangelizes how AI/ML innovation solves complex challenges facing community, enterprise, and startups alike. Out of the office, he enjoys staying active with kettlebell-sport, spending time with his family and friends, and is an avid fan of Euro-league basketball.

Source: https://aws.amazon.com/blogs/machine-learning/arcanum-makes-hungarian-heritage-accessible-with-amazon-rekognition/

Continue Reading

AI

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage. Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, […]

Published

on

Arcanum specializes in digitizing Hungarian language content, including newspapers, books, maps, and art. With over 30 years of experience, Arcanum serves more than 30,000 global subscribers with access to Hungarian culture, history, and heritage.

Amazon Rekognition Solutions Architects worked with Arcanum to add highly scalable image analysis to Hungaricana, a free service provided by Arcanum, which enables you to search and explore Hungarian cultural heritage, including 600,000 faces over 500,000 images. For example, you can find historical works by author Mór Jókai or photos on topics like weddings. The Arcanum team chose Amazon Rekognition to free valuable staff from time and cost-intensive manual labeling, and improved label accuracy to make 200,000 previously unsearchable images (approximately 40% of image inventory), available to users.

Amazon Rekognition makes it easy to add image and video analysis to your applications using highly scalable machine learning (ML) technology that requires no previous ML expertise to use. Amazon Rekognition also provides highly accurate facial recognition and facial search capabilities to detect, analyze, and compare faces.

Arcanum uses this facial recognition feature in their image database services to help you find particular people in Arcanum’s articles. This post discusses their challenges and why they chose Amazon Rekognition as their solution.

Automated image labeling challenges

Arcanum dedicated a team of three people to start tagging and labeling content for Hungaricana. The team quickly learned that they would need to invest more than 3 months of time-consuming and repetitive human labor to provide accurate search capabilities to their customers. Considering the size of the team and scope of the existing project, Arcanum needed a better solution that would automate image and object labelling at scale.

Automated image labeling solutions

To speed up and automate image labeling, Arcanum turned to Amazon Rekognition to enable users to search photos by keywords (for example, type of historic event, place name, or a person relevant to Hungarian history).

For the Hungaricana project, preprocessing all the images was challenging. Arcanum ran a TensorFlow face search across all 28 million pages on a machine with 8 GPUs in their own offices to extract only faces from images.

The following screenshot shows what an extract looks like (image provided by Arcanum Database Ltd).

The images containing only faces are sent to Amazon Rekognition, invoking the IndexFaces operation to add a face to the collection. For each face that is detected in the specified face collection, Amazon Rekognition extracts facial features into a feature vector and stores it in an Amazon Aurora database. Amazon Rekognition uses feature vectors when it performs face match and search operations using the SearchFaces and SearchFacesByImage operations.

The image preprocessing helped create a very efficient and cost-effective way to index faces. The following diagram summarizes the preprocessing workflow.

As for the web application, the workflow starts with a Hungaricana user making a face search request. The following diagram illustrates the application workflow.

The workflow includes the following steps:

  1. The user requests a facial match by uploading the image. The web request is automatically distributed by the Elastic Load Balancer to the webserver fleet.
  2. Amazon Elastic Compute Cloud (Amazon EC2) powers application servers that handle the user request.
  3. The uploaded image is stored in Amazon Simple Storage Service (Amazon S3).
  4. Amazon Rekognition indexes the face and runs SearchFaces to look for a face similar to the new face ID.
  5. The output of the search face by image operation is stored in Amazon ElastiCache, a fully managed in-memory data store.
  6. The metadata of the indexed faces are stored in an Aurora relational database built for the cloud.
  7. The resulting face thumbnails are served to the customer via the fast content-delivery network (CDN) service Amazon CloudFront.

Experimenting and live testing Hungaricana

During our test of Hungaricana, the application performed extremely well. The searches not only correctly identified people, but also provided links to all publications and sources in Arcanum’s privately owned database where found faces are present. For example, the following screenshot shows the result of the famous composer and pianist Franz Liszt.

The application provided 42 pages of 6×4 results. The results are capped to 1,000. The 100% scores are the confidence scores returned by Amazon Rekognition and are rounded up to whole numbers.

The application of Hungaricana has always promptly, and with a high degree of certainty, presented results and links to all corresponding publications.

Business results

By introducing Amazon Rekognition into their workflow, Arcanum enabled a better customer experience, including building family trees, searching for historical figures, and researching historical places and events.

The concept of face searching using artificial intelligence certainly isn’t new. But Hungaricana uses it in a very creative, unique way.

Amazon Rekognition allowed Arcanum to realize three distinct advantages:

  • Time savings – The time to market speed increased dramatically. Now, instead of spending several months of intense manual labor to label all the images, the company can do this job in a few days. Before, basic labeling on 150,000 images took months for three people to complete.
  • Cost savings – Arcanum saved around $15,000 on the Hungaricana project. Before using Amazon Rekognition, there was no automation, so a human workforce had to scan all the images. Now, employees can shift their focus to other high-value tasks.
  • Improved accuracy – Users now have a much better experience regarding hit rates. Since Arcanum started using Amazon Rekognition, the number of hits has doubled. Before, out of 500,000 images, about 200,000 weren’t searchable. But with Amazon Rekognition, search is now possible for all 500,000 images.

 “Amazon Rekognition made Hungarian culture, history, and heritage more accessible to the world,” says Előd Biszak, Arcanum CEO. “It has made research a lot easier for customers building family trees, searching for historical figures, and researching historical places and events. We cannot wait to see what the future of artificial intelligence has to offer to enrich our content further.”

Conclusion

In this post, you learned how to add highly scalable face and image analysis to an enterprise-level image gallery to improve label accuracy, reduce costs, and save time.

You can test Amazon Rekognition features such as facial analysis, face comparison, or celebrity recognition on images specific to your use case on the Amazon Rekognition console.

For video presentations and tutorials, see Getting Started with Amazon Rekognition. For more information about Amazon Rekognition, see Amazon Rekognition Documentation.


About the Authors

Siniša Mikašinović is a Senior Solutions Architect at AWS Luxembourg, covering Central and Eastern Europe—a region full of opportunities, talented and innovative developers, ISVs, and startups. He helps customers adopt AWS services as well as acquire new skills, learn best practices, and succeed globally with the power of AWS. His areas of expertise are Game Tech and Microsoft on AWS. Siniša is a PowerShell enthusiast, a gamer, and a father of a small and very loud boy. He flies under the flags of Croatia and Serbia.

Cameron Peron is Senior Marketing Manager for AWS Amazon Rekognition and the AWS AI/ML community. He evangelizes how AI/ML innovation solves complex challenges facing community, enterprise, and startups alike. Out of the office, he enjoys staying active with kettlebell-sport, spending time with his family and friends, and is an avid fan of Euro-league basketball.

Source: https://aws.amazon.com/blogs/machine-learning/arcanum-makes-hungarian-heritage-accessible-with-amazon-rekognition/

Continue Reading
AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI9 hours ago

Arcanum makes Hungarian heritage accessible with Amazon Rekognition

AI13 hours ago

Pros and Cons of using cloud platforms for building chatbots

AI13 hours ago

From Knowledge Databases To Knowledge Graphs And Conversational AI

AI13 hours ago

Model selection with cross-validation: A quest for an elite model

AI14 hours ago

Celebrating 10 Years of Innovation, Excellence, and Trust

AI24 hours ago

Executive Interview: Brian Gattoni, CTO, Cybersecurity & Infrastructure Security Agency 

AI1 day ago

Making Use Of AI Ethics Tuning Knobs In AI Autonomous Cars 

AI1 day ago

Application of AI to IT Service Ops by IBM and ServiceNow Exemplifies a Trend 

AI1 day ago

Testing Finds Automated Driver Assistance Systems to be Unreliable 

AI1 day ago

How  Veterans Would Study Machine Learning If He Had to Start Today 

Trending